Kineticism and the 1960s

The American art scene of the 1960s welcomed George Rickey, who, like many other artists at the time, also played the role of art historian and critic. He was interested in the cleanly cut lines and industrial materials that characterized works made in the prevailing Minimalist aesthetic. The Minimalist trend, along with artists’ growing exploration of kinetics, aligned art with the machine technology that was quickly evolving in society. Many artists were experimenting with motion as a metaphor for social change or a commentary on the proliferation of machines and industrial production. Rickey, however, utilized industrial materials to achieve a fluid, poetic motion that followed nature, avoiding political and social commentary.

In the sixties, America provided a wealth of material for an artist interested in movement. The increasingly ubiquitous automobile, the highway boom, and travel into space embodied a culture obsessed with movement and a desire to break free from norms. The recent invention of the Portapak, a small, relatively cheap, and portable video camera, allowed many to even produce their own moving videos. This culture looked radically to the future, but still remained firmly tied to its roots through a respect for nature and the physical splendor of the land. Both the culture of the 1960s and America’s roots in nature were present in Rickey’s work, which utilized geometric forms and the machine aesthetic of contemporary commercial-fabrication techniques, while recognizing nature as a source of motion.

The widespread desire to portray motion can be seen in Rickey’s Untitled (“Belloli” Space Churn) (Fig. 14), from 1964, a sculpture that resembles a planet with concentric rings. Rickey had completed his first recorded “space churn” in 1953, but his interest in the form resurfaced in the sixties, when it would evolve from small models into large-scale outdoor works increasingly complex in their movement. His expansion of this theme coincided with the first manned space travel: in 1961 the Soviet cosmonaut Yuri Gagarin traveled into space and fulfilled what seemed, at the time, an impossible yet ultimate movement. Rickey’s 1964 piece is cut from sheet metal and is an early model to test the form and motion of the space churn—a sculpture incorporating multiple rings, each with its axis set off center so that they would circle at different speeds and in varying patterns. The balance and weight of each ring affects the others, keeping the spinning motion captivating and dynamic. Rickey’s earliest space churns were operated with a hand crank, but he added flat vanes to the outer edges of later sculptures to prompt them to move with the wind.

Kinetic art had achieved even more recognition in Europe than in the United States, in part because of the Constructivists’ heavy influence on European art in the early part of the twentieth century, as well as the value that the German Bauhaus tradition placed on the use of industrial construction techniques. Although many American artists were working with kinetics, Europe remained the place where these artists found inspiration. In the spring of 1961, the first major exhibition of kinetic sculpture, “Bewogen-Beweging,” was held at the Stedelijk Museum in Amsterdam and the Moderna Museet in Stockholm. Rickey contributed a work to this show and visited the exhibition to write a review for the journal Arts. Here, he formed his conclusions about the heavy influence of Constructivism on kinetic art, and first formulated the idea for the book on Constructivism he would publish in 1957. By this time, he was enjoying much recognition in Europe, participating in exhibitions in Berlin and receiving several public commissions. In 1954 his international reputation was cemented when his Two Lines Temporal I, a work made of two 35-foot steel blades that swing in the wind, hovered over the outdoor crowds at the exhibition “Documenta III” in Kassel, Germany.

Whereas Rickey had spent the first part of the 1950s constructing devices to display motion, he spent the years between 1957 and 1962 experimenting with a larger scale, trying new materials, and learning how to most effectively use the mechanical techniques he had developed. While on sabbatical in Rome (where he combined a gimbal with rotors in his series Rotors, Water Plants, and Flowers), Rickey also began his Ommagio a Bernini works. This series, initiated in 1957 and completed in 1960, signaled his next transition, a shift that narrowed his selection of forms to blade-like lines and moved away from the use of color.

Figure 14. Untitled (“Belloli” Space Churn), 1964.
In 1960 Rickey received a Guggenheim fellowship and took another sabbatical from Tulane. With this grant, he was able to sculpt full-time in East Chatham, where the family settled permanently the next year. In 1961 his Guggenheim fellowship was renewed, and he resigned from Tulane. The opportunity to commit a large portion of his time to one place and one studio coincided with the simplification of forms in his sculptures. In the idyllic landscape of East Chatham, movement surrounded him and nature enveloped his works, complementing and enhancing them. This expansive setting also allowed him space to work on very large projects. In 1966 he began teaching foundation design courses to architecture students at Rensselaer Polytechnic Institute (RPI) in Troy, New York. There, he met and began to work with Roland Hummel, an engineering professor at the School of Architecture, in a collaboration that continued for the rest of Rickey’s life.44

It was also in 1961 that Rickey discovered the reverse knife-edge bearing, which allowed him to use blades that moved independently of one another. Sedge Themes was his first series exploring the formal possibilities of this technology. In another work that uses this bearing device, Bubble Chamber I (fig. 15), from 1962, alternating blades are fixed to a wall as pendulums, weighted so that they rest at acute angles. The playful lines pointing in all different directions hint at the activity of a bubble chamber—a device used in physics to heat liquid to the point of boiling and vaporizing, creating trails of microscopic bubbles that are used to measure the energy of charged particles.45 In 1962 Rickey began working with monumental blades, forms he would continue to use in Two Lines Oblique (fig. 16), a towering outdoor sculpture from 1967. Here, two fifteen-foot lines situated atop a tall Y-shaped base swing delicately back and forth and sometimes, in a playful wind, circle completely around. Although works such as this were much larger than Rickey’s earlier sculptures, they remained as intricately constructed as his smaller works.

By 1965 the blade had become his signature language. In Twenty-four Lines (fig. 17), from 1968, numerous blades converge into the shape of a single large blade, emphasizing his simplified selection of forms. This streamlining reduced the number of variables within his works, and Rickey focused on developing a simpler set of forms in more complex ways. He also became even more directly concerned with movement and how it might be variously displayed. In 1966 he left his teaching post at RPI to again commit his efforts to sculpture full-time.
The blade was a simple, slender, poetic shape that recalled the needles, masts, and clock pendulums from Rickey’s past and resembled the blades of grass and swaying tree branches that surrounded him in East Chatham. It allowed him to investigate which kinds of technology achieved the subtlest movements, and how weights and forms might create a specific type of motion. In an interview, he related how this lean, straightforward form let him focus on understanding how construction and movement worked: “I could try and reduce the elements to their simplest possible essence. And it is that which has led me to using linear forms, to try to eliminate everything that is not contributing to the movement.”46 As each blade was added to a sculpture, it suggested ideas for other shapes and movements. Shifting and crossing one another, the blades wove a story of Rickey’s progression through the discovery of motion.

This focus on blades provided the sculptor with an understanding of motion that gradually led him to involve other forms. He began working again with planes, which used the same pendulum technology as blades, and then in 1966 he began to stack the planes.47 One example of this, Four Rectangles Oblique (fig. 18), from 1972, examines the movement of rectangular planes. Four rectangles form a square, with each segment presenting different motions that combine into a fluid wave.

During the 1960s, Rickey’s titles had begun to express the growing austerity of his use of form, describing the geometric shapes and motions of the sculptures rather than referencing subjects such as aspects of nature, as his earlier titles had. As the motion in his works became more refined and exact, this change in how he titled them reflected a shift in subject matter from nature to movement. His was an aesthetic of consistent forms unified into a language of motion; but, crucially, each work’s movement remained unpredictable under the forces of nature.
In 1968 Rickey received a stipend from the Deutscher Akademischer Austausch Dienst (DAAD), the German Academic Exchange Service, and set up a studio in Berlin that he would maintain from then until 1995. After having spent the first two decades of his life in Europe, in a sense he returned in 1968. In 1976 he began splitting his time between East Chatham and West Berlin.

In the wooded Dahlem district of Berlin, his living and studio spaces were much smaller than in East Chatham. There, and in the many other transitory working spaces he occupied throughout his itinerant life, drawings and maquettes became particularly important to his working process and testing of ideas. Rickey used drawings to work out many formal concerns and then progressed “to some rather crude model . . . to see how I can get the traffic organized, because there are certain things you cannot draw, even in perspective”; mainly, drawings cannot reveal “what will happen when the movement has started.” 49 Lucinda Barnes documents the importance of drawing to Rickey’s construction process, noting that sketches were an initial means of rendering his ideas, that they reveal individual aspects of his thought process, and that they allowed a spontaneity that was not possible in sculptural models, which remained subject to the forces of gravity.50 The drawings are alluded to in the sculptures themselves as the moving parts cut through the air, tracing the lines of the preparatory sketches used in their construction. In Rickey’s words, “Blades in diverse configurations followed, a kind of kinetic drawing in space, first planar, then defining volume—space cut up by lines, pierced by lines, limited by lines.”51

During this time, having already decided to focus on a few forms, Rickey continued to expand the possibilities of motion in his sculptures. Looking back in 1980, he discussed this development:

I make things now that I would never have thought of as possible. If I have been working on the development of a language, which in some ways I have, at the same time I’ve become more and more aware of what it is possible to say with that language. For example, for years I accepted what I would call linear movement or movement along a straight line. Then I came to realize that one can design an object in which the movement is along a curve. It’s like a phrase of music that takes an unexpected turn.52

Up until this point, the paths traced by his sculptures’ parts had been linear, planer, or gyratory. As he began using his lines and rectangles to outline a conical path, and then further developed their movement to allow them to circle outside of that path—in what he called “excentric” movement—the visual options of his sculpture increased dramatically.53

CULTIVATING THE ARTISTIC PROCESS

Figure 19, Two Rectangles, Open Excentric, 1977

Figure 20, Two Open Rectangles Excentric, 1977
Maquettes provided an important tool for testing this eccentric motion. In 1977 Rickey created *Two Rectangles, Open Excentric* (fig. 19), which would serve as a model for another work from 1977, *Two Open Rectangles Excentric* (fig. 20), itself a study. In both models, two long rectangles circle around a central armature. In the first, the top-heavy rectangles create a seemingly dramatic balance. However, the weights are visible, evidencing Rickey’s rigorous working process of testing weights and bearings through drawings and maquettes, a process that ensured his sculptures’ ultimately graceful movement.

In these explorations of motion, Rickey regularly negotiated the seeming dichotomy between nature and the machine. For example, the large stainless steel sculpture for which *Two Open Rectangles Excentric* was a study was designed to sit in the landscape or in a sculpture courtyard with the sky on the horizon, so that the movement of the sculpture within nature and the movement of nature as a backdrop would conflate into one lyrical scene. While the reflection of sunlight and the surroundings on the metal further integrates such sculptures into the environment, the sharp flicker of silver with each shift calls attention to their mechanistic roots in stainless steel.

Through his reverence of nature as the source of movement, Rickey argued the failings of the machine and its use by some other kinetic artists. In 1979 he completed *Two Conical Segments, Gyratory Gyratory II* (fig. 21), an outdoor sculpture that stands tall with two arms extending horizontally from the top of a post. Its steel joints hold rotating conical segments. In another outdoor work, *Two Open Triangles Up Gyratory* (fig. 12), from 1982, two triangles create a frame with the center left empty. The triangles circle around the sculpture’s central point, the top of the post to which they are attached. Driven by air currents, both sculptures present a simplicity of structure in which a motor would instantly be extraneous. Rickey described how movement activated by the hand is too clumsy, and by the machine, too predictable: “the hand, especially the untrained hand, is too heavy,” and “repetition [caused by a machine] soon can become boredom.”54 The movements of his highly planned structures are ultimately dependent on random chance: a sharp wind can transform a subtle motion replicating the waving of branches or blades of grass into wild forms circling unpredictably in the air. These idiosyncratic actions resist the boring, repetitive mechanical motion expected from Rickey’s industrial materials.

This contradiction also extends into his treatment of those materials. The sharpness of steel crafted into long metal forms in these works introduces ideas of mechanical production, but the machine is disavowed by evidence of the artist’s hand and working process. Nan Rosenthal describes how Rickey “grinds the surface in short, random strokes, with a motorized rotary carborundum disk, so that they become responsive to light.”55 When he stopped using color
Figure 22. Two Open Triangles In Geometry, 1981.

Figure 23. Study for Faceted Column, 1991.
to polychrome his steel surfaces, he polished most of the works to a shiny, fluid finish that evinced his touch. He felt that this transformation of the steel's finish brought his works to life, noting that "when [stainless steel] comes from the factory . . . the surface is just a dull gray, lifeless surface . . . I want to break through that uniform gray and have it become more lively in relation to light." Study for Faceted Column (fig. 23), from 1991, exemplifies this polish and how it contributes to the harmony of the work by presenting a continuous surface along the segmented forms. This study was for a much larger sculpture that combined many of these faceted pieces into a large vertical column in the atrium of a tall office building, the Trigon Building, in Berlin. In that setting, the polished finish reflects the work's surroundings, just as its vertical orientation emulates them.

Several more works illustrate how Rickey's intricate working process balances the opposition between the natural, delicate, lyrical movement of his forms and the machine aesthetic of their materials and exacting construction. In the late 1960s and early 1970s, he created a series of spirals, small tabletop sculptures made of stainless steel wire that he often gilded. In Two Lines with Spirals (fig. 24, see images on pages 14 and 15), dated about 1973, each of the two components was crafted from a single piece of industrial wire twisted into a graceful spiral that weights down one end of the line. In Two Cubes (fig. 25), from 1988, the cubes rest upon two arms that extend from a central base, forming a Y. The six-inch cubic forms appear heavy but rotate lightly and discretely. Another sculpture constructed in 1988, XIII (fig. 26), consists of an X-shaped base on which sit three I shapes, each held up on a support. In this instance, Rickey's calculated use of steel forms produced a refined and symbolic structure that acknowledged a friend's thirteenth anniversary. The sharp-edged forms of mechanistic wire and steel that compose these works initially evoke hard, rough, rigid power, but in each case the sculptor transforms them into exquisite artistic statements. In fact, part of his originality is rooted in this ability to imbue heavy industrial materials with a grace that lies outside their typical manufacturing context.
Throughout his career, George Rickey remained dedicated to teaching and promoting the arts through his written art criticism, his public sculptures, and his constant emphasis on the importance of history and teaching. In 1980, in a continuation of this commitment, he established the Hand Hollow Foundation, where artists could spend their summers working and participating in lively discussions. In the 1990s he made yet another aesthetic shift in his own art, returning to the creation of small, colored objects. In *One Rotor One Counterweight* (fig. 27), from 1993, a rotor hangs over a triangular base, and small painted rectangular planes circle to produce a kaleidoscope of bright colors. Early in his career, dissatisfaction with the ability to show motion through painting had led him to work in sculpture. Now, late in life, he revisited the integration of color and motion through these small, colored objects that he called "paintings."58

Rickey’s lifelong pursuit of an aesthetic language of motion had been an exploration through space and time, leading him to discover and rediscover both places and design challenges, but it was always “simply the pursuit of what is possible.”59 Although his journey had taken him to many places, his studio remained the space where he translated his travels into delicate kinetic works. In 2001 he returned to the Midwest, where his journey had begun, moving to St. Paul, Minnesota, and maintaining a small studio there. Rickey died in St. Paul on July 17, 2002, at the age of ninety-five.

The life of his sculptures continues, however. Their motion oscillates between arrested, slow, and fast, with different parts moving at varied rates in an ongoing series of unrepeatable instances. Over time, a viewer might stand in front of a sculpture, walk around it, or occupy a space beneath it, each time experiencing a different impression of movement. *Etoile VIII* (fig. 28), a maquette from 1983 for a larger version, is made of many fluttering, circling, and individually rotating parts that offer an endless array of potential movements. In a 1984 discussion of how he approached motion in this sculpture, Rickey explained: “My intention is that these periods [of oscillation] be slightly different from one another, and that they be long enough so that the observer cannot easily anticipate reversal of direction.”60

Figure 27. *One Rotor One Counterweight*, 1993

Figure 28. *Etoile VIII*, 1983
This emphasis on the unknown makes directly experiencing his works essential to appreciating them. Their movement denies effective reproduction in a single image: “Since a photograph records only one instant and one instance among variations and never the factor of chance, it provides a false record of kinetic sculpture, which can have no ‘correct’ posture at rest.” Consequently, Rickey’s sculptures are often represented by several pictures that capture particular moments in a sequence resembling a short film, displaying his work in stop-motion. Even these sequences, however, only hint at the complete movement that the viewer observes when standing in front of the same work, or when walking around it to take in the many viewpoints it offers.

Only through direct engagement with Rickey’s sculptures can the viewer appreciate the many layers of form that they contain: the form of the steel sculpture itself, the path traced by its elements, the negative space of the surrounding air and environment, and, most particular to his kinetic works, the endless potential of a motion impelled by the unpredictable powers of nature. The subtle, natural movement, reflective surfaces, and anthropomorphic proportions all help to capture the imagination of the viewer. Further, the relationship of the different parts to one another and the paths of motion they outline create a Constructivist-inspired “virtual volume.”

Figure 29, Distortable Quadrilateral, 1990

Figure 30, Open Triangles One Up and One Down (slender), 1983
For instance, in Unstable Quadrilateral (fig. 29), from 1990, two blades placed at a diagonal from the central base create the illusion of a filled plane as they move back and forth. In Open Triangles One Up and One Down (slender) (fig. 30), from 1983, a three-dimensional form is carved in space by the triangles as they circle up, down, and around. The negative space of the environment frames the sculptures but also provides the source of their movement. When this source disappears—if, for instance, the wind stops blowing—the motion temporarily halts, but its potential is ever-present. The viewer is left to imagine how the activity and the forms it creates might continue. Rickey commented on this essential component of his works: “I realized that the form didn’t need to be a closed mass but could be a series of points or lines around which the mind makes an envelope.”63

In Constructivist art, movement was often symbolic of a call for ideological or political change. Rickey, however, used movement on a more personal level, to inspire reflection. The subtle movement that he ultimately wanted to stir was in his viewers, coaxing them to be aware of their existence in time and nature. The fluid, poetic, lyric motion of his sculptures encourages viewers to appreciate art, nature, and form within the course of their daily lives, as the surrounding world moves quickly, dramatically, and mechanically. As Valerie Fletcher writes:

```
Rickey’s works can gently heighten viewers’ awareness of time actually passing and, in a marvelously indirect way, persuade them to recognize the beauty of pure abstraction. His sculptures tempt passersby to stop and look . . . By the time we have watched the motions through several changing cycles, the sculpture has had its intended effect: we have slowed down, stopped, become gradually detached from the demands of our busy lives.”64
```

Traveling to see Rickey’s sculptures completes their course, stirs change in the viewer, and supplies one of many possible endings to the remarkable journey that Rickey made in his life and in his art. He wrote of his unique quest to uncover motion, “I did not want merely to set a static art in motion, nor did I want to describe the dynamic world around me with a series of moving images. I wanted the whole range of movements themselves at my disposal, not to describe what I observed in the world around me, but to be themselves performing in a world of their own.”65

Today, viewers who enter the world that George Rickey created continue to be enthralled and inspired by it, as his dynamic sculptures endlessly perform their idiosyncratic movements.
Fig. 1 – George Rickey, Ship I, 1954, painted mild steel and brass, 18.75 x 20 inches, private collection Zollikon, Switzerland, photo by Geoffrey Clement

Fig. 2 – George Rickey, Three Vertical Two Horizontal Lines (Pivoting), 1966, stainless steel, 35 x 36 x 6 inches, Snite Museum of Art, promised gift of the George Rickey Foundation

Fig. 3 – George Rickey, Two Vertical Two Horizontal Lines, 1974, stainless steel, 28.5 x 28.5 inches, Snite Museum of Art, promised gift of the George Rickey Foundation

Fig. 4 – George Rickey, Diptych: The Seasons, 1956, painted steel, 24 x 60 x 21 inches, Snite Museum of Art, gift of Mr. Thomas T. Solley

Fig. 5 – George Rickey, Abstraction in 4D, 1959, stainless steel and polychrome, 11 x 43 x 15 inches, Snite Museum of Art, promised gift of the George Rickey Foundation

Fig. 6 – George Rickey, Fish, 1951, steel and polychrome glass, 22 x 32 inches, collection of the Indiana University Art Museum

Fig. 7 – George Rickey, Four Last Leaves, 1952, steel and bronze, 41 x 48 inches, Snite Museum of Art, promised gift of the George Rickey Foundation

Fig. 8 – George Rickey, Silver Plume I, 1951, stainless steel, 18 inches high, collection of Dr. and Mrs. Clinton Hollister

Fig. 9 – George Rickey, Silver Plume II (altered), 1961, stainless steel, 10 feet high, collection of Mr. and Mrs. Larry Gilbert, London
Fig. 10 – George Rickey, *Planes and Circles*, 1957, steel, bronze wire, and polychrome, 8.5 x 6 x 6 inches, Snite Museum of Art, promised gift of the George Rickey Foundation

Fig. 11 – George Rickey, *Triads*, 1958, stainless steel and brass, 53 x 41 inches, Snite Museum of Art, promised gift of the George Rickey Foundation

Fig. 12 – George Rickey, *Column of Nine Rotors with Two Triangles*, 1973, stainless steel, 27 x 5 x 5 inches, Snite Museum of Art, promised gift of the George Rickey Foundation

Fig. 13 – George Rickey, *Acrobats*, 1960, steel and enamel, 21.5 x 15 x 1.5 inches, Snite Museum of Art, promised gift of the George Rickey Foundation

Fig. 14 – George Rickey, *Untitled ("Belloli" Space Churn)*, 1964, bronze, 12.5 x 12.5 x 10.5 inches, Snite Museum of Art, promised gift of the George Rickey Foundation

Fig. 15 – George Rickey, *Bubble Chamber I*, 1962, stainless steel, 41 x 49 x 9 inches, Snite Museum of Art, promised gift of the George Rickey Foundation

Fig. 16 – George Rickey, *Two Lines Oblique*, 1967, stainless steel, 25 feet high, Snite Museum of Art
Fig. 17 – George Rickey, Twenty-four Lines, 1968, stainless steel, 8 x 6 feet, Snite Museum of Art, promised gift of the George Rickey Foundation

Fig. 18 – George Rickey, Four Rectangles Oblique, 1972, stainless steel, 44 x 43.5 x 11.25 inches, Snite Museum of Art, promised gift of the George Rickey Foundation

Fig. 19 – George Rickey, Two Rectangles, Open Excentric, 1977, stainless steel and lead counterweight, 26 x 8 inches, Snite Museum of Art, promised gift of the George Rickey Foundation

Fig. 20 – George Rickey, Two Open Rectangles Excentric, 1977, stainless steel, 36 x 9.5 x 1.5 inches, Snite Museum of Art, promised gift of the George Rickey Foundation

Fig. 21 – George Rickey, Two Conical Segments, Gyration Gyratory II, 1979, stainless steel, 123 x 124 inches, Snite Museum of Art, acquired with the funds provided by Mr. and Mrs. Al Nathe

Fig. 22 – George Rickey, Two Open Triangles Up Gyratory, 1982, stainless steel, 9 feet 8 inches x 4 feet 9 inches, Snite Museum of Art, promised gift of the George Rickey Foundation
Fig. 23 – George Rickey, Study for Faceted Column, 1991, stainless steel, 36 x 16 x 10 inches, Snite Museum of Art, promised gift of the George Rickey Foundation

Fig. 24 – George Rickey, Two Lines with Spirals, circa 1973, stainless steel wire, gilded, 13 x 2 inches, Snite Museum of Art, promised gift of the George Rickey Foundation

Fig. 25 – George Rickey, Two Cubes, 1988, stainless steel, 21 x 24 inches, Snite Museum of Art, bequest of George Rickey

Fig. 26 – George Rickey, XIII, 1988, stainless steel, 17 x 36 x 30 inches, Snite Museum of Art, bequest of George Rickey

Fig. 27 – George Rickey, One Rotor One Counterweight, 1993, stainless steel with polychrome (rotor), 8.5 x 6 x 6 inches, Snite Museum of Art, promised gift of the George Rickey Foundation

Fig. 28 – George Rickey, Etoile VIII, 1983, stainless steel, 4 x 9 x 9 inches, Snite Museum of Art, promised gift of the George Rickey Foundation

Fig. 29 – George Rickey, Unstable Quadrilateral, 1990, stainless steel, 23 x 24 inches, Snite Museum of Art, gift of the George Rickey Workshop

Fig. 30 – George Rickey, Open Triangles One Up and One Down (slender), 1983, stainless steel, 56 x 12 x 5 inches, Snite Museum of Art, promised gift of the George Rickey Foundation
ENDNOTES

4 Ibid., 225.
8 Rosenthal, George Rickey, 42.
9 Maxwell Davidson III, George Rickey. The Early Works (Atglen, PA: Schiffer Books, 2004). 23. Davidson cites the Ship series as the first to use the gimbal and describes how a gimbal consists of a pivot that allows an object to rotate on a single axis. When another gimbal is placed within and perpendicular to the first, an orthogonal support allows the inner object to remain upright as its support pitches and rolls.
14 Rosenthal, George Rickey, 27.
16 Rosenthal, George Rickey, 27. Albers came to the Bauhaus school as a student in 1920. In 1923 he was appointed an instructor, a position he held until 1933, when he came to the United States to teach at Black Mountain College.
17 Rickey, quoted in Jeanne Segal, Artwords: Discourses on the 60s and 70s (Ann Arbor, MI: UMI Research Press, 1985), 141.
19 When Moholy-Nagy founded the school, it was called the Institute of Design; it was renamed the Institute of Design in Chicago in 1944. By the time Rickey attended, the school had taken on an engineering and architectural focus, but it was still important to the curriculum during the later 1940s and 1950s under Moholy-Nagy’s successor, Serge Chermayeff; see Holliday T. Day, “Crossroads of American Sculpture,” in Day, Ashton, and Vigna, Crossroads of American Sculpture, 74–107. Rickey became disenchanted with the school’s failure to continue the principles taught in its strong design foundation courses into the more advanced coursework and specialized design vocations; see George Rickey, interview by Joseph Travis at the artist’s home, East Chatham, New York, July 17, 1965, transcript, Smithsonian Archives of American Art.
20 Davidson, The Early Works, 3. These subject titles are taken from the chapter headings of Maxwell Davidson’s monograph, in which he gives a detailed account of Rickey’s early sculpture.
21 Rosenthal notes that this was Rickey’s largest work to date, was built to withstand varied weather conditions, and allowed for more freedom in its movement; Rosenthal, George Rickey, 32. Day also comments that this was Rickey’s largest sculpture and that it broke away from his small works that sat on pedestals; Day, “Crossroads of American Sculpture,” 65.
22 Rickey, quoted in Grum, The Artist Observed, 246.
23 See Day, “Crossroads of American Sculpture,” 71. “New metal-working techniques, such as welding, were also necessary to making larger pieces in steel. Although Silver Plume II (rotated on a tripod that rotated around a base) had been made without welding because it pivoted on a point, welding had to replace the solder Rickey had been using to construct his small works.”
24 Davidson, The Early Works, 50.
25 Day describes that Rickey, then teaching at IU, urged Henry Hope, the art historian who led the art department, to invite Smith to teach at IU for the 1944–45 academic year. Rickey himself left IU in January 1945; Day, “Crossroads of American Sculpture,” 64. Rosenthal also notes Rickey’s friendship with Smith in Rosenthal, George Rickey, 34.
26 Rosenthal elaborates that “at that time Rickey was still joining metal parts with silver and lead solder exclusively, and he asked David Smith to show him how to weld with oxyacetylene. . . . In future years when Rickey needed to go on to brazing- and spot-welding, he bought the equipment and taught the techniques to himself.” Rosenthal, George Rickey, 34.
Smith’s works were larger than most sculpture of the time. He was also liberal with materials, spending large sums of money on them. Rickey followed this advice when he could afford to. Day, “Crossroads of American Sculpture,” 65; Rosenthal, George Rickey, 34.

Davidson discusses the structure of this work in The Early Works, 81.

Rosenthal, George Rickey, 51.

Ibid., 38.

Ibid., 42.

Ibid., 51.

Ibid., “Crossroads of American Sculpture,” 70.

Davidson, The Early Works, 127; Rosenthal, George Rickey, 48–50.

Davidson, The Early Works, 20; Rosenthal, George Rickey, 43–46.

Rosenthal, George Rickey, 60.

Reiko documents the importance of Rickey’s intercontinental travel to his work, and particularly to his development as a Constructivist sculptor, in “Between Two Continents.”

Ibid., 17.

Fletcher, Gedeon, Rickey, and Rickey, George Rickey: Kinetic Sculpture, 109.

Davidson, The Early Works, 239.

Rickey, quoted in Siegal, Artwords, 142.

Rickey describes how Rickey’s planes “are compound pendulums weighted underneath with lead or a steel bar at the short end—that is, the end nearest to the bearings—to compensate for the rest of the plane.” Rosenthal, George Rickey, 68.

Ibid., 46.

Barnes, in her study of drawings for sculpture, separates them into four categories: the elementary sketch, the variation or modification of an established form, the working or technical drawing, and the drawing of unrealized sculpture. Lucinda A. Barnes, George Rickey: Drawings for Sculpture (Williamstown, MA: Williams College Museum of Art, 1977), 3.

Rickey, quoted in Gruen, The Artist Observed, 258.

Rosenthal, George Rickey, 75.

Rickey, quoted in Siegal, Artwords, 143.

Rosenthal, George Rickey, 74.

Rickey, quoted in Siegal, Artwords, 145.

Davidson, The Early Works, 261.

The Moving World, directed by Kevin MacDonald.

Gruen, The Artist Observed, 257. “Reflecting on the philosophy and aesthetics of his work, George Rickey maintains that it is simply the pursuit of what is possible.”

Rosenthal, George Rickey, 47.

Rickey, quoted in ibid., 48–49.

Fletcher, in Fletcher, Gedeon, Rickey, and Rickey, George Rickey: Kinetic Sculpture, 26.

Rickey, quoted in Gruen, The Artist Observed, 258.
BIBLIOGRAPHY

For ease of use, the bibliography is organized into several categories. The first section, writings by George Rickey, is arranged chronologically to follow the development of the artist’s writing career. In each of the remaining sections, the sources are listed in alphabetical order by author’s last name.

PUBLICATIONS BY GEORGE RICKEY

BOOKS, MONOGRAPHS, AND SOLO EXHIBITION CATALOGS

Articles

Interviews and Films

General Sources on Sculpture

Story, Ala. *Constructivist Tendencies: From the Collections of Mr. and Mrs. George Rickey.* Santa Barbara: University of California, Santa Barbara Art Gallery, 1970.

Rickey’s Influences

Nash, Steven A. *David Smith: Drawing and Sculpting.* Dallas, TX: Nasher Sculpture Center, 2005.
PHOTO CREDITS

Geoffrey Clements, Courtesy of the George Rickey Workshop — page 32.
Chuck Loving — pages 18-19, 20-21, 22, and 23.
Steve Moriarty — pages 6-7, and 14.
Eric Nyby — cover image and pages 4-5, 6-7, 8-9, 10-11, 12-13, 14-15, 16-17, 18-19, 20-21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, and 80.
Michael Swoboda — title page image and pages 25, 26, and 66.

Other images courtesy of the George Rickey Workshop — pages 44 and 45.

COLOPHON

Printed by Rink Printing, South Bend, Indiana, July 2009.
Bound at A & H Bindery, Broadview, Illinois.
Cover: 100 lb. Utopia Premium Silk Cover.
Flysheet: 70 lb. Royal Metallic Steel Text, Embossed.
Typeface: Scala and Gotham.

Design and production by Michael Swoboda, MA ’08.
Published by the Snite Museum of Art, University of Notre Dame.
Copyright 2009.